目录

1A									 			 												1
1B									 															1
10																								2

1A

一开始就提及要实数复数一起讲,豪。这也暗示了复数上的结论不能简单地推广到实数里。 复数的乘法逆元可以证明一下,实际上就是解个方程(A、B 为已知数):

$$\begin{cases} Ac - Bd = 1 \\ Ad + Bc = 0 \end{cases}$$

实际上,有 $\left(A + \frac{B^2}{A}\right)c = 1$ 和 $\left(\frac{A^2}{B} + B\right)c = \frac{A}{B}$ 两种操作这个等式组的方法,所以只要 A 和 B 不全为 θ ,方程就总是有解,进而复数 A + Bi 就总是有逆元。

实际上,我更愿意用加粗的 0 来表示: $0 \in \mathbb{F}^n$

嗯哼,代数闭域,这下我理解了,闭其实就是封闭性的意思。例如实数多项式可能不止有实数解,还会有复数解;但复数多项式的解一定是复数。

习题 8, $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ 和它的相反数是 \sqrt{i} (原谅我用了一些几何上的结论来想象,即使我并不理解它们)

习题 10,甚至都找不到一个 λ 使得 $\lambda(2-3i)=12-5i$,更别提.....

由于并未定义 $\mathbb{F}^n \cdot \mathbb{F}^n \to \mathbb{F}^n$ 的运算,所以只有习题 15 和习题 16。

1B

向量空间,是一种特殊的代数空间......(不明的呻吟

举了异于 \mathbb{F}^n 的例子,确实能让人体会到向量空间这个概念本身的抽象性。

我去,函数的向量空间 FS! 那三点中的后两点是辅助验证第一点的。

后面的两个唯一似乎有些抽象代数了。

命题 1.30/1.31 得出的结论对向量空间是普适的,不论是什么样的向量空间,也很抽代。

习题 1, -(-v) + (-v) = (-1+1)(-v) = 0 = v + (-v),两侧加上 -v 的加法逆元即可

习题 2,假设 $a \neq 0$,那么必然存在 $\frac{1}{a} \in \mathbb{F}$, $a\mathbf{v} = \mathbf{0}$ 两边同乘 $\frac{1}{a}$ 就得到 $\mathbf{v} = \mathbf{0}$,命题成立;反之 a = 0 命题就直接成立,

习题 3,存在性显然,而对于唯一性,可以从加法逆元的唯一性出发,满足方程的解一定是 $-\frac{w-v}{2}$ 的逆元。

习题 4,硬要说的话空集中没有 0

习题 5, 0v = [a + (-a)]v = av + (-a)v = 0, 由于 $a \neq 0$, 两边乘上 $\frac{1}{a}$ 即可

习题 6,有点分析味,实际上构造一些反例就行了,比如按照给出的定义来说, $(\infty + \infty) - \infty = 0$,而 $\infty + (\infty - \infty) = \infty$

习题 7,假如 V 是个函数向量空间,那么 V^S 中可能会有满足 f(S) = g 这样的函数作为元素。但实际上只需要考虑由于 $range(f) \in V$ (也就是 f 的值域是向量空间中的元素),那么对 f 定义的标量乘法只需要把标量定义为 V 中定义的标量即可。

习题 8,挺 trivial 的,不证了。

习题 7/8 代表的是两种拓展 V 的方向,向量的函数仍能组成向量空间,复向量的构造/推广也能组成向量空间。

1C

1.35 都比较 naive,其中 a 的关键点是 $b \neq 0$ 时乘法就不封闭了,b 书上自己说了,c 的关键点是 0 函数是可微的,且可微函数的线性组合仍是可微函数(由此满足封闭性),d 的关键点是只有 b = 0 时 0 函数才在集合中,e 的话按照柯西收敛的语言套就行了。

今天就到这里。